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Abstract

The dynamical behavior of an axisymmetric elastic beam subjected to axial leakage flow is investigated numerically

and experimentally. The coupled equations of motion for a fluid and a beam structure are derived using the

Navier–Stokes equation for an axial leakage flow-path and the Euler–Bernoulli beam theory. Performing complex

eigenvalue analysis, the variation of the dynamic behavior during pre- and post-instability is investigated with respect to

increasing axial leakage flow velocity. Also, an experiment was performed to determine the critical velocity of the

unstable dynamic behavior of an axisymmetric elastic beam confined in a concentric cylinder subjected to axial leakage

flow through a small annulus, and to measure the variation of the dynamic behavior on pre- and post-instability when

the unstable phenomenon with the lower predominant frequency is shifted to the higher one. The relationships between

the axial flow velocities and the unstable phenomena are clarified for the transition from the lower mode to the higher

mode by comparing the theoretical calculations with experimental observations. Especially, the generation of traveling

waves and the energy balance for the distortion of vibration response in the axial direction are discussed and considered

at the transition region of the complex coupled vibration response of an axisymmetric elastic beam subjected to an axial

leakage flow. Numerical and experimental results are found to be in quite good agreement.

r 2006 Elsevier Ltd. All rights reserved.

Keywords: Axial leakage flow; Axisymmetric elastic beam; Divergence; Flutter; Stability; Traveling wave; Complex eigenmode
1. Introduction

A fluid is often used as an energy-transfer medium in industrial machines. Also, many machines and structures must

be constructed and operated in flowing fluid. The velocities of the fluid are often increased in order to increase the

efficiency and make the structural scale more compact. Such increases in velocity sometimes cause a fluid-elastic

instability of machines and structures.

In this paper, the fluid-elastic vibration of an axisymmetric circular beam subjected to axial leakage flow is

investigated. Examples of such structures include nuclear reactor cores, valves in piping, high-speed trains passing

through a tunnel, and robots traveling through the inside of piping.
e front matter r 2006 Elsevier Ltd. All rights reserved.
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The vibrational mechanisms of structures subjected to axial leakage flow have been studied by many researchers

(Blevins, 1977; Hobson, 1982; Chen, 1987; Yasuo and Paı̈doussis, 1989; Inada and Hayama, 1990a,b; Paı̈doussis et al.,

1990; Fujita and Ito, 1992; Fujita et al., 1994; Arai and Tajima, 1997; Paı̈doussis, 1998, 2004). Studies involving an

elastic axisymmetric beam and a fluid flow described in terms of the Navier–Stokes equation are however few, although

Paı̈doussis et al. (1990) reported the dynamics and stability of a flexible cylinder using both potential flow theory and an

approximate solution of the Navier–Stokes equations for the fluid force acting on the cylinder. The development of

improved coupled vibration analysis methodologies, the derivation of the physical meaning of the vibrational

characteristics and so on are subjects that remain for future research.

The present authors have already reported on the axial leakage flow-induced vibration of an axisymmetric circular

elastic beam based on the Navier–Stokes equation (Fujita and Shintani, 2001). As a continuation of this research, this

paper presents an experimental analysis of an elastic beam subjected to axial leakage flow, and describes numerical

analyses performed for verification. The variation of mode shape in the vicinity of the critical velocity, and the physical

meaning of the occurrence of a traveling wave are investigated experimentally and numerically, and it is shown that

there is good agreement between the proposed experiments and theoretical analyses.
2. Theoretical analysis

2.1. Coupled equations and stability analysis

The unstable vibratory behavior of an axisymmetric circular elastic beam shown in Fig. 1(a) is investigated. The

elastic circular beam is set coaxially inside of a circular cylinder with a small annular gap H which is assumed to be

sufficiently small compared to the radius R and length L of the beam, that is, H5R, H5L.
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Fig. 1. Analysis model. (a) Axisymmetric elastic beam and axial leakage flow. (b) Expansion of gap to three-dimensional plane from

cylindrical coordinate.
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As previously mentioned (Fujita and Shintani, 2001), the stability criteria for the leakage flow-induced vibration of

an axisymmetric continuous elastic beam with a circular section is obtained by deriving the coupled equation between

an elastic beam and an axisymmetric leakage flow, and performing the coupled complex eigenvalue analysis.

The elastic beam is described by the Euler–Bernoulli-type partial differential equation:

rsA
q2DH0ðY ; tÞ

qt2
þ cs

qDH0ðY ; tÞ

qt
þ EI

q4DH0ðY ; tÞ

qY 4
¼ Df ðY ; tÞ, (1)

where rs is the density of the circular beam, A is its cross-sectional area, cs is the damping coefficient of the beam,

DH0ðY ; tÞ is the small displacement at y ¼ 0 which corresponds to the flexural deflection of the beam, EI is the flexural

rigidity of the beam, and Df ðY ; tÞ which is the unsteady force per unit length on the beam,

Df ðY ; tÞ ¼ 2

Z p

0

DPðy;Y ; tÞR cos ydy, (2)

it is calculated by using the unsteady fluid pressure DPðy;Y ; tÞ, which is described later.

The solution DH0 is assumed to be able to be expanded as a linear combination of the orthonormal modal functions

ffkðY Þg, which are the modes in vacuum (uncoupled modes), as follows:

DH0ðY ; tÞ ¼
X1
k¼1

DW kðtÞfkðY Þ, (3)

where DW kðtÞ is kth time functions.

The axial flow is assumed to be laminar and incompressible. Since the gap is narrow, the annulus is expanded into a

three-dimensional Cartesian plane from cylindrical coordinates as shown in Fig. 1(b). The axisymmetric leakage flow is

modelled using equations of continuity as the incompressible fluid and momentum based on the Navier–Stokes

equations. The following derivation procedure of the unsteady pressure is described in detail in the earlier paper (Fujita

and Shintani, 2001). Introducing the flow rates Qy ¼
RH

0
U dZ, QY ¼

RH

0
V dZ; where U and V are the flow velocities in

the y- and Y -directions, and integrating the equations of motion of the fluid, the equations relating pressure, flow rates

and gap are obtained. The flow velocity W in the radial direction is assumed to be negligibly small. Dividing the gap,

pressure and flow rate into a steady part (denoted with an overbar) and an unsteady part (denoted by Dð Þ), linearized
equations are obtained. Eliminating the flow rates in the resultant equations, the equation of the unsteady pressure is

derived.

The unsteady pressure DPðy;Y ; tÞ acting on the surface of a circular beam can be obtained by solving the

axisymmetric leakage flow based on the Navier–Stokes equations as follows:

DPðy;Y ; tÞ ¼ DP0ðY ; tÞ cos y, (4)

DP0ðY ; tÞ ¼ �
X1
k¼1

D2kðY Þ
d2DW kðtÞ

dt2
�
X1
k¼1

E2kðY Þ
dDW kðtÞ

dt
�
X1
k¼1

F2kðY ÞDW kðtÞ, (5)

where the functions D2kðY Þ, E2kðY Þ and F2kðY Þ depend on the flow velocity and consist of uncoupled eigenfunctions

(modal function of the beam in vacuum) fkðY Þ and their derivatives, as follows:

D2kðY Þ ¼ D1kðY Þ þ
eY=R

e�L=R � eL=R
ð�e�L=RD1kð0Þ þD1kðLÞÞ þ

e�Y=R

e�L=R � eL=R
ðeL=RD1kð0Þ �D1kðLÞÞ, ð6Þ

E2kðY Þ ¼ E1kðY Þ þ
eY=R

e�L=R � eL=R
ð�e�L=RE1kð0Þ þ E1kðLÞÞ þ

e�Y=R

e�L=R � eL=R
ðeL=RE1kð0Þ � E1kðLÞÞ, ð7Þ

F2kðY Þ ¼ F1kðY Þ þ
eY=R

e�L=R � eL=R
�e�L=RF1kð0Þ þ F1kðLÞ � e�L=R xinrQ̄
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with the functions D1kðY Þ, E1kðY Þ, F1kðY Þ as follows:

D1kðY Þ ¼
rR2

1� R4blk

1

H̄
fkðY Þ þ

R2

H̄

d2fkðY Þ

dY 2

� �
, ð9Þ

E1kðY Þ ¼
rR2

1� R4blk

12n

H̄
3
fkðY Þ þ

2Q̄Y

H̄
2

dfkðY Þ

dY
þ

12nR2

H̄
3
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dY 2
þ

2Q̄Y R2

H̄
2

d3fkðY Þ
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� �
, ð10Þ
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( )
, ð11Þ

and the parameters b ¼ rsA=EI , lk ¼ o2
k, with ok being the eigenfrequency of the beam in a vacuum.

Finally, the coupled equations of motion considering fluid-structure interaction can be derived in the following

matrix form:

½Ms þMa�
d2

dt2
fW nðtÞg þ ½Cs þ Ca�

d

dt
fW nðtÞg þ ½Ks þ Ka�fW nðtÞg ¼ f0g, (12)

where fW nðtÞg ¼ fDW 1ðtÞ;DW 2ðtÞ; . . . ;DW nðtÞg
T is the modal vector when the mode number is truncated at n, and the

coefficient matrices ½Ms�, ½Cs� and ½Ks� represent the modal mass, damping and stiffness matrices of the elastic beam,

respectively. ½Ma�, ½Ca� and ½Ka� are the added mass, added damping, and added stiffness matrices, respectively,

describing fluid-structure interaction, and depend on the flow velocity V̄ ¼ Q̄Y=H̄.

Let us represent Eq. (12) in state space. The state vector is introduced as fzðtÞg ¼ fWT
n ðtÞ

_W
T

n ðtÞg
T and the following

matrix is obtained:

½A� ¼
½On� ½In�

�½Mg�
�1½Kg� �½Mg�

�1½Cg�

" #
, (13)

where ½Mg� ¼ ½Ms þMa�, ½Cg� ¼ ½Cs þ Ca�, ½Kg� ¼ ½Ks þ Ka�, and ½In� and ½On� are the unit and zero matrices. The

coupled equation is then rewritten as

f_zðtÞg ¼ ½A�fzðtÞg. (14)

By analysis of the coupled eigenvalue (complex eigenvalue) s of the matrix ½A�, the stability of the coupled system can be

investigated. In the following calculations, the Software MATLAB is used to calculate the eigenvalues. The root-locus

(Argand) diagram can be obtained by complex-analysis of Eq. (13) corresponding to the flow velocity V̄ and by plotting

the real and imaginary parts of the eigenvalue s. An imaginary part of the complex eigenvalue s, ImðsÞa0 and a real

part ReðsÞ40 implies a dynamic instability (flutter), and ImðsÞ ¼ 0 and ReðsÞ40 implies a static instability

(divergence).

Therefore, the coupled jth complex eigenmode fc
j ðY Þ is then expressed as follows:

fc
j ðY Þ ¼

Xn

i¼1

fiðY Þcji, (15)

where fcjig is determined by the complex vector fZg.

Thus, the critical flow velocity and coupled vibration modes for the leakage flow-induced vibration can be evaluated

by this process.

2.2. Accuracy of the proposed method

As a numerical example, the external cylinder is considered to be rigid and the flexible hollow rod to be made of

polyvinyl chloride (PVC), and water in the annulus is used as the fluid in this subsection. The dimensions of the model

are given by length L ¼ 1000mm, outer and inner radius of the rod R ¼ 10mm, Rin ¼ 7mm and the gap width

H̄ ¼ 1mm. At first, the rod is assumed to be simply supported at both ends.

Here, let us consider how the number of eigenmodes in a vacuum (the number of comparison functions) affects the

accuracy of coupled complex modes. In Fig. 2, the relation between the number of comparison functions employed to

calculate the complex eigenvalues and the absolute values of first–third complex eigenvalues before and after instability

is shown using the dimensions described above. As the axial velocity becomes high, more modes are necessary for

keeping the same accuracy. It can be said that the coupled modes almost converge when more than the first 10

comparison functions are used. Though this accuracy depends on the dimensions of the model, it can be considered to

be all right for similar dimensions as used in this figure. From the above viewpoint, the number of comparison functions
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Fig. 2. Relation among number of eigenmodes in a vacuum (comparison functions) for several axial flow velocities and the accuracy of

the calculated complex eigenvalues.

Fig. 3. Effect of fluid characteristics on stability of a simply supported beam: �, air; n, water; H̄ ¼ 4mm, E ¼ 9:44� 107 Pa, L ¼ 0:8m,

2R ¼ 16mm.
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is set as n ¼ 10 in the following calculations. In Paı̈doussis (1998), the number of modes N ¼ 3; 4 is considered to be

adequate for predicting the critical velocity. Therefore, the result examined in Fig. 2 can be said to be reliable and

practical.
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2.3. Root-locus (Argand) diagram

Let us present the theoretical results based on the above-mentioned theory (Fujita and Shintani, 2001) before the

experimental analysis is explained. Fig. 3 shows the root-locus (Argand) diagram of a simply supported elastic beam, as

determined by the complex eigenvalue analysis for air and water. The length of the beam is L ¼ 0:8m, with outer radius

of R ¼ 8mm, gap width of H̄ ¼ 4mm, and Young’s modulus of E ¼ 9:44� 107 Pa. These dimensions also apply to the

experimental model. As the flow velocity increases, the first mode becomes unstable, eventually giving rise to

divergence, whereas the second and third modes lead to flutter. The vibration in air is found to be more stable than in

water.
Fig. 5. Influence of gap and length on the critical flow velocity: from the upper curve, L ¼ 1:0m flutter; L ¼ 1:2m flutter; L ¼ 1:5m
flutter; L ¼ 1:0m divergence; L ¼ 1:2m divergence; L ¼ 1:5m divergence; air; E ¼ 3:07� 107 Pa, 2R ¼ 16mm.

Fig. 4. Influence of the Young’s modulus of a beam on the critical flow velocity: �, first mode; n, second mode; ’, third mode; air;

L ¼ 0:8m, 2R ¼ 16mm, H̄ ¼ 3mm.
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2.4. Effect of dimensions of an elastic beam model on stability

We investigated the vibrational characteristics and the unstable phenomena by performing parametric studies by

varying the flow velocity, the length of the experimental beam model, the gap size between the outer radius of the elastic

beam model and the inner radius of the circular cylinder, the density, and the equivalent Young’s modulus of the elastic

beam model. Fig. 4 shows the relation between the equivalent Young’s modulus of an elastic beam and the critical

velocity. It is found that the critical flow velocity becomes lower when the elasticity of the beam is lower.

Fig. 5 shows the influence of the length of the beam and of the annular gap on the critical flow velocity. The vibration

is found to become unstable at smaller flow velocity as the annular gap is reduced and the length is increased.
3. Experiment and comparison with theory

3.1. Test apparatus

Fig. 6 shows the apparatus used to examine the axial leakage flow vibration of an axisymmetric elastic beam. The

axisymmetric circular elastic beam is made of silicone rubber, and a brass wire is inserted down this center in order to

maintain straightness and to tune the natural frequency as shown in Fig. 7(a). The simply supported boundary

condition is realized by simply-fixing the wire at the center of the outer cylinder on both ends as shown in Fig. 7(b). The

inlet and outlet are tapered to suppress turbulence due to flow separation, as shown in Fig. 7(c).

Fig. 8 shows the experimental instrumentation system. The vibration of the beam was measured by using a laser

measurement system in order to avoid any possible deterioration of accuracy due to contact measurement. Specification

of the laser sensor is as follows. The normal distance for measurement is 30mm. The range of measurement is �5mm.

The resolution of the laser sensor is 1mm and the sampling period is 512ms. Axial flow was driven by a blower operating

in suction mode, which was installed at the outlet of the flow channel to suppress the influence of turbulence due to flow

separation. The overall signals detected by the laser sensors were analyzed by using a FFT analyzer. The random noise

due to flow turbulence was eliminated by ensemble averaging procedures. Further, the vibration mode shapes were

measured and determined by both the analyzed data based on FFT and high-speed photographs.

3.2. Experimental model and preliminary analysis

Table 1 shows the dimensions of the experimental model. The length of the beam is 0.8m, the diameter 16mm, the

inner diameter of the outer cylinder 24mm, hence the gap width is 8mm. It is difficult to set the elastic beam in the

center of a narrow passage. Hence, the gap came to be a little larger, although the larger gaps reduce the accuracy of the

theory presented. The beam model is simply supported at both ends. The equivalent Young’s modulus of the silicone

rubber beam is 9:44� 107 Pa; it was measured exactly by performing a free vibration test.

In the experiment, air is used as the fluid such that the root-locus (Argand) diagram of the experimental model corresponds

to the case shown in Fig. 3 for air-flow. The first vibrational mode develops divergence instability at an axial leakage flow

velocity of 96m/s, followed by flutter instability in the second mode at 140m/s, as shown by the root-locus diagram in Fig. 3.

This dynamical behavior agrees with what was observed by Paı̈doussis (2004) for essentially unconfined flow.

The coupled mode is assumed by the linear combination of uncoupled modes as shown in Eq. (15). Hence the cji is

the complex number ratio of the ith uncoupled mode content in the jth coupled mode. Moreover, Fig. 9 shows the

relation between the flow velocity and the ratio
Pn

iðiajÞðjcjij=jcjj jÞ of the jth uncoupled vibrational mode and other

uncoupled modes included in the jth coupled mode.
Pn

iðiajÞðjcjij=jcjjjÞ ’ 0 implies fc
j ðY Þ ’ fjðY Þcjj , that is, the jth

coupled mode is almost the jth uncoupled mode. In case of a still fluid, this relation holds. Focusing on the second mode

for the velocity V̄ ¼ 215m=s before the onset of flutter of the third mode, the ratio of the modes except the second

uncoupled mode included in the second coupled mode
Pn

iðia2Þðjc2ij=jc22jÞ changes rapidly. Then the second coupled

mode shape changes rapidly with increasing velocity. This is related to the generation of the traveling wave in the

theory, as described later.

3.3. Experimental results and comparison with theory

Although the theory presented is linear, it is applied in the post-critical domain, as the geometric nonlinear effects

cannot be considered to be predominant because the gap between the inner beam and the outer rigid cylinder is
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Fig. 7. Detailed composition of the test apparatus. (a) Brass wire installed at the center of the outer cylinder. (b) Simply fixing a brass

wire at the inlet and outlet portions. (c) Taper shape nozzle at the inlet portion.

Fig. 6. Test apparatus for axial leakage flow-induced vibration of an axisymmetric elastic beam.
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relatively small compared with other dimensions. With increasing axial flow velocity, divergence was recognized first in

the experiment, followed by flutter, in good agreement with the numerical results. Table 2 shows a comparison between

the critical velocities determined by experiment and theory, respectively.

Fig. 10 shows the comparison between experimental and calculated critical velocity. Moreover, the onsets of

divergence and flutter are illustrated simultaneously in this figure, and the onset of a traveling wave (which is explained

later more concretely) is also illustrated here.

Table 2 and Fig. 10 show that there is good agreement between the experimental results and theoretical analysis. In

addition, the slight difference between the critical velocities of the third mode is considered to be due to the assumption

of laminar flow and the omission of compressibility in the theory.

Fig. 11 shows the variation in mode shape for both the experiment and the theoretical analysis with increasing flow

velocity. The vibrational characteristics can be classified from this figure into the following 10 steps with primary

reference to the experimental results:
1.
Tab

Dim

Len

Dia

Equ

Inne
First mode vibration with small amplitude in the experiment.
2.
 First mode vibration with slightly larger amplitude in the experiment.
3.
 Divergence of the first mode appears in the experiment (86.25m/s) and theory (96m/s), and the position of the

maximum amplitude is shifted slightly downstream in both experiment and theory.
4.
 After the beam contacts the inner surface of the cylinder due to first mode divergence, the remainder of the beam

begins vibrating in the experiment.
5.
 First mode divergence is distorted in the theory and flutter of the second mode appears in the experiment (148m/s)

and theory (140m/s).
Fig. 8. Experimental instrument system measuring the axial leakage flow-induced vibration of a beam.

le 1

ensions of an experimental model

gth of beam 0.8m

meter of beam 16mm

ivalent Young’s modulus of beam 9:44� 107 Pa

r diameter of outer cylinder 24mm
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Fig. 9. Relation between the flow velocity and the ratios of the special uncoupled mode and other modes included in the coupled mode:

�, ratio of the first uncoupled and other uncoupled modes included in the first coupled mode; �, ratio of the second uncoupled and

other uncoupled modes included in the second coupled mode; n, ratio of the third uncoupled and other uncoupled modes included in

the third coupled mode.

Table 2

Comparison between experimental and calculated critical velocity

Experimental value (m/s) Theoretical value (m/s) Relative error [(exp-theor)/theor]

1st 86.25 96 �0.102

2nd 148 140 0.0571

3rd 170 215 �0.209

K. Fujita et al. / Journal of Fluids and Structures 23 (2007) 463–478472
6.
 Divergence of the second mode appears in the experiment (about 162m/s) and theory (about 195m/s).
7.
 After the beam contacts the inner surface of the cylinder due to second mode divergence, the remainder of the beam

begins vibrating in the experiment.
8.
 The vibrational amplitude of the downstream portion becomes larger due to the onset of a traveling wave in the

experiment (about 165m/s) and theory (about 200m/s).
9.
 A traveling wave is observed in both experiment and theory.
10.
 Flutter of the third mode appears in the experiment (170m/s) and theory (215m/s).
The traveling wave is identified in the theoretical analysis if the axial position with maximum amplitude of the mode
moves in the axial direction during one period due to phase lags among the modes in vacuum. This corresponds to the

rapid change of the mode ratio of the referred uncoupled mode and other uncoupled modes shown in Fig. 9. It is found

that two types of flutter, namely the flutter not accompanying the traveling wave (Step 5) and the flutter accompanying

traveling wave (Step 8) in Fig. 11 exist. As a whole, the theory is considered to reproduce vibration phenomena well,

except for nonlinear behavior in the experiment due to impact between the beam and the inner surface of the cylinder.

Besides, for the air flow at 20 �C and atmospheric pressure, the onset of divergence at a mean flow speed V̄ ¼ 96m=s
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Fig. 10. Comparison between experimental and calculated critical velocity: �, experiment; n, theory.
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using a kinematic viscosity n ¼ 1:5� 10�5 m2=s is in the turbulent flow region. Also, the Mach number at the onset of

divergence is M ¼ V̄=c ¼ 0:28 using the speed of sound c ¼ 340m=s, that is on the limit that compressibility effects can

be ignored. Therefore, as the theory adopted in this paper is based on laminar flow, the numerical calculation results

may be predicted to be qualitative, not quantitative for evaluating the dynamic pre- and post-instability behavior.

However, the comparison between experimental and theoretical results shows that the linear theory is capable of

providing estimates sufficiently accurate for many engineering purposes.

Fig. 12 compares the experimental and simulated traveling components of the second mode shape over one period.

The arrows indicate the position of the maximum vibrational amplitude. The traveling wave is identified also in the

experiment since the axial position with maximum amplitude of the vibration is observed to move in the axial direction

during one period. Again, the results are in good agreement.

Fig. 13 shows photographs of the traveling third mode shape over one period observed in the experiments. Similarly

to the second mode in Fig. 12, the axial position with maximum amplitude of the vibration is also observed to move in

the axial direction during one period.
4. Discussion

4.1. Comparison between experiments and theory

In the experiment, we employed the elastic beam with low stiffness to obtain the divergence and flutter easily.

However, when we reduced the gap, the experimental model contacted the inner side of rigid cylinder because

the straightness of the beam could not be maintained well. Therefore, we adopted the brass wire inserted in the

center of the beam to keep the straightness. Yet, it is still difficult to set such an elastic beam in a very narrow

passage in the experiment, which would satisfy perfectly the assumption of H=R51, H=L51 in our proposed theory.

Hence, we could find no other way except for adopting a little wider gap. In spite of these difficulties, an attempt is

made to clarify the dynamics of an axisymmetric elastic beam subjected to an axial leakage flow at the pre- and post-

instability.

From Figs. 10 and 11, the theoretical results by the complex eigenvalue analysis using the Navier–Stokes equation in

an axial leakage flow-path and the Euler–Bernoulli beam theory appear to agree well with the experimental results in

terms of the critical velocity and distortion of the vibration response at the transition from the lower mode to the higher

mode. However, some differences between the experiments and theory can be seen for the higher modes, possibly due to

the assumption of laminar flow and the omission of compressibility of the fluid in the theory.
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(a)

(b)

Fig. 11. Comparison of variation in vibrational mode shape between the experiment and the theory with increasing flow velocity. (a)

Transition from first mode to second mode. (b) Transition from second mode to third mode.
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4.2. Coupled vibrational modes and traveling waves

Based on the present results, the predominant unstable vibration of a beam subjected to axial leakage flow appears to

shift from the coupled first mode to the second mode, and then to the third mode. When the lower mode is shifted to the

higher mode, the symmetry and asymmetry between the upstream and downstream parts of the vibration modes

collapse and the vibration response becomes distorted. The onset of this distortion of the coupled mode shape causes

the first mode to shift to the second mode, and then the second mode to shift to the third mode. In particular, from the
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flutter of the second coupled mode to the third coupled mode observed in theory, the nodal point of the mode shape

begins to travel after the distortion appears. Generally speaking, the nth flutter can be said to be unable to shift to the

ðnþ 1Þth flutter until a traveling wave has been generated, except for the first coupled mode. This mechanism of a

traveling wave generation is summarized in Fig. 14. The fact that flutter and traveling wave is not the same thing is

understood to exist in this study experimentally and analytically.
Fig. 13. Travel of the third mode shape over one period in experiment.

(a) (b)

Fig. 12. Travel of the second mode shape over one period. (a) Experiment. (b) Simulation.
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4.3. Energy balance due to traveling wave

In the vicinity of critical velocity, it is observed that the nodal point shifts in the axial direction in both the experiment

and the numerical analysis.

The generation of the traveling wave upon the transition from the nth mode to the ðnþ 1Þth mode can be presumed to

depend on the macroscopic imbalance of the kinetic and potential energies of the beam. As the flow velocity increases

after the onset of flutter, the energy supplied to the beam by the fluid exceeds the energy consumed by the flutter

through dissipation in the material, structural damping and fluid friction. Thus, the traveling wave is generated in order

to keep the balance of energy. This mechanism can be explained by using the conveyance action due to the traveling

wave of a vibration, as shown in Fig. 15.

Let us consider a leakage flow located on the surface of a beam vibrating with a traveling wave as shown in Fig. 15.

That is, as a force is necessary to generate the distortion of vibration response in the axial direction, and also to generate
Fig. 14. Summary on mechanism of traveling wave generation.

vibration of a beam

direction of 

a leakage flow 

Fig. 15. Schematic illustration of a traveling wave.
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Fig. 16. Hypothesis of energy balance due to traveling wave.
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the traveling wave, the steady and unsteady axial flow is considered to work on the structure for generating such

force. When the flow velocity increases, the leakage flow acts on the beam as the surface shear force in the direction

of flow and generates a traveling wave. In contrast, the leakage flow can be acted upon by the traveling wave,

opposite to the direction of flow, based on the principle of action and reaction, that is, part of the energy of the

leakage flow is consumed for generating the traveling wave in order to prevent the energy supplied to flutter

by the leakage flow from exceeding the dissipated energy due to the flutter when the leakage flow velocity increases.

From this point of view, the generation of a traveling wave can be considered necessary to maintain the energy balance

between the supplied and dissipated energy. However, when the flow velocity increases further, the energy balance due

to the generation of the traveling wave cannot be maintained, eventually resulting in the shift of unstable vibration from

the nth to the ðnþ 1Þth unstable vibration. This mechanism of energy balance due to a traveling wave is summarized in

Fig. 16.
5. Conclusions

The following conclusions have been reached.
(i)
 The unstable vibration behavior of an axisymmetric circular beam subjected to axial leakage flow was clarified

experimentally and analytically. The measured threshold of instability is found to show comparatively good

agreement with the analytical results from an engineering viewpoint, although they are based on linear theory

assuming laminar flow.
(ii)
 In the experiment, when the divergence or flutter of a lower mode shifts to a higher mode, especially in the case of

flutter, it is found that they always accompany the generation of traveling waves.
(iii)
 In the analysis, the dynamic pre- and post-instability behavior, that is the shifting from a lower mode to a higher

with accompanying distortion of the vibration response in the axial direction and traveling waves, is found to be in

fairly good agreement with experiments although the analysis is based on linear theory.
(iv)
 The hypothesis on the generating mechanism of traveling waves is proposed by observing pre- and post-instability

phenomena experimentally and analytically. That is, it can be considered that, when the energy supplied to the
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beam by the fluid flow exceeds the energy consumed by flutter with no accompanying traveling wave, a traveling

wave is generated at first at the transition from a lower vibration to a higher one, in order to suppress the imbalance

of energy; then the vibration shifts to the higher vibration as a higher vibration consumes more energy.
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